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1. Introduction

In 3-D incompressible ideal fluids, a vortex ring is an axisymmetric flow whose vorticity is entirely
concentrated in a solid torus, which moves with constant speed along the symmetry axis. See [1,4–6] for
the existence of vortex ring solutions to the 3-D Euler equations.

However, for viscous fluids, the vortex ring solutions cannot exist, since all localized structures will be
spread out by diffusion. Thus it is natural to consider the Navier–Stokes equations with a vortex filament,
and more generally with positive linear combinations of circular vortex filaments which have a common
axis of symmetry as initial data.

To state this precisely, let us start with the Navier–Stokes equations in R
3

∂tu + u · ∇u − Δu + ∇p = 0, div u = 0, (t, y) ∈ R
+ × R

3, (1.1)

where u(t, y) = (u1, u2, u3) stands for the velocity field and p the scalar pressure function of the fluid,
which guarantees that the velocity field remains divergence free.

In the following, we restrict ourselves to the axisymmetric solutions without swirl of (1.1), for which

the velocity field u and its vorticity ω
def= curlu take the particular form

u(t, y) = ur(t, r, z)er + uz(t, r, z)ez, ω(t, y) = ωθ(t, r, z)eθ,

where (r, θ, z) denotes the cylindrical coordinates in R
3 so that y = (r cos θ, r sin θ, z), and

er = (cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1), r =
√

x2
1 + x2

2.

As in [9], we equip the half-plane Ω = {(r, z)|r > 0, z ∈ R} with the measure drdz. More precisely, for
any measurable function f : Ω → R, we denote

‖f‖Lp(Ω)
def=
(∫

Ω

|f(r, z)|pdrdz
) 1

p

< ∞, 1 ≤ p < ∞,

and ‖f‖L∞(Ω) to be the essential supremum of |f | on Ω. For notational simplicity, we shall always denote
a generic point in Ω by x = (r, z).
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Recalling the axisymmetric Biot-Savart law discussed in Section 2 of [9], we know that for any given
ωθ ∈ L1(Ω) ∩ L∞(Ω) which vanishes on r = 0, the linear elliptic system

⎧
⎨
⎩

∂ru
r +

1
r
ur + ∂zu

z = 0, ∂zu
r − ∂ru

z = ωθ, on Ω,

ur|r=0 = 0, ∂ru
z|r=0 = 0,

has a unique solution (ur, uz) ∈ C(Ω)2 which vanishes at infinity. We denote this solution by u = BS[ωθ].
Hence we only need to study the equation for ωθ:

∂tω
θ + (ur∂r + uz∂z)ωθ − urωθ

r
=
(

∂2
r + ∂2

z +
1
r
∂r − 1

r2

)
ωθ. (1.2)

Now let us discuss the initial condition. We first recall from [9] that, the axisymmetric vorticity Eq.
(1.2) is globally well-posed whenever the initial vorticity is in L1(Ω). As a natural extension, they then
considered the case of an initial vorticity in M(Ω), which denotes the set of all real-valued finite regular
measures on Ω, equipped with the total variation norm

‖μ‖tv
def= sup

{∫

Ω

φ dμ
∣∣∣φ ∈ C0(Ω), ‖φ‖L∞(Ω) ≤ 1

}
,

where C0(Ω) denotes the set of all real-valued continuous functions on Ω that vanishes at infinity and on
the boundary ∂Ω. It is also proved in [9] that (1.2) is globally well-posed if the initial vorticity μ is in
M(Ω) with a small enough atomic part.

As mentioned in the second paragraph, we focus here on the particular case

μ =
n∑

i=1

αiδxi
, (1.3)

where n is some positive integer, αi is some positive constant, and δxi
is the Dirac mass at point xi =

(ri, zi) ∈ Ω with ri > 0. Such a μ is purely atomic, and we can deduce from [9] that (1.2) is globally
well-posed provided that

‖μ‖tv =
n∑

i=1

αi

is small enough. On the other hand, for arbitrary positive values of αi, [3] gives the existence of a global
mild solution, and [10] proves the uniqueness when n = 1. In this paper, we are going to prove the
uniqueness for general n. Our result states as follows:

Theorem 1.1. If the initial vorticity μ of (1.2) is given by (1.3), then (1.2) has a unique global mild
solution (see Definition 2.1 below) ωθ in C(]0,∞[, L1(Ω) ∩ L∞(Ω)

)
, satisfying

sup
t>0

‖ωθ(t)‖L1(Ω) < ∞, and ωθ(t)drdz ⇀ μ as t → 0. (1.4)

Moreover, there exists some constant C0 depending only on (αi, xi)n
i=1, such that whenever

√
t ≤ 1

2

min1≤i<j≤n

{|xi − xj |, ri

}
, there holds the following short time estimate:

∥∥∥ωθ(t, ·) − 1
4πt

n∑
i=1

αie
− |·−xi|2

4t

∥∥∥
L1(Ω)

≤ C0

√
t| ln t|. (1.5)

Let us end up this section with some notations. We use C (resp. C0) to denote some absolute positive
constant (resp. some positive constant depending on (αi, xi)n

i=1), which may be different in each occur-
rence. f � g means that f ≤ Cg for some constant C. For a Banach space B, we shall use the shorthand
‖u‖Lp

T (B) for the norm
∥∥‖u(t, ·)‖B

∥∥
Lp(0,T )

.
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2. Decomposition of the Solution

Following the ideas in [10], where uniqueness has been proved under the assumption that thei nitial
vorticity in a single Dirac mass, a natural idea is to decompose the solution into n parts, according to
the decomposition of the initial vorticity (1.3). This idea is however nontrivial to implement, due to the
nonlinearity of the Eq. (1.2). The strategy is to view the equation on ωθ as a linear advection-diffusion
one, with u being given and to study the properties of its fundamental solution. This will be done in the
first subsection.

The purpose of the second subsection will be to show that, at least for short times, ωθ
i is very close—in

the L1(Ω) sense—to the Oseen vortex located at xi with circulation αi. This goal will be achieved using
self-similar variables around the point xi.

2.1. The Linear Semigroup and the Trace of the Solution at Initial Time

Let us consider the linearized system of (1.2), namely⎧⎨
⎩

∂tω
θ − (∂2

r + ∂2
z +

1
r
∂r − 1

r2

)
ωθ = 0, (t, r, z) ∈ R

+ ×Ω,

ωθ|r=0 = 0, ωθ|t=0 = ωθ
0 .

(2.1)

Denote by
(
S(t)

)
t≥0

the evolution semigroup determined by this linearized system, which has the following
explicit formula

(
S(t)ωθ

0

)
(r, z) =

1
4πt

∫

Ω

r̄
1
2

r
1
2
H

(
t

rr̄

)
exp
(

− (r − r̄)2 + (z − z̄)2

4t

)
ωθ

0(r̄, z̄) dr̄dz̄, (2.2)

where H : (0,∞) → R is a smooth function satisfying the following property: ταH(τ) and τβH ′(τ) are
bounded on (0,∞) if 0 ≤ α ≤ 3

2 and 0 ≤ β ≤ 5
2 . One may check Section 3 of [9] for a detailed study of

this semigroup.
By using

(
S(t)

)
t≥0

, we can define the mild solutions of (1.2) in the following way:

Definition 2.1. Let T > 0, we say that ωθ ∈ C
(
]0, T [, L1(Ω)∩L∞(Ω)

)
is a mild solution of (1.2) on ]0, T [,

if for any 0 < t0 < t < T , there holds the following integral equation

ωθ(t) = S(t − t0)ωθ(t0) −
∫ t

t0

S(t − s) div∗
(
u(s)ωθ(s)

)
ds. (2.3)

Here u = BS[ωθ] and div∗
(
uωθ
) def= ∂r(urωθ) + ∂z(uzωθ).

Before proceeding further, let us recall some a priori estimates for the mild solution.

Lemma 2.1. Let ωθ be a mild solution of (1.2) on (0, T ) satisfying (1.4), u = BS[ωθ]. It is shown in
Estimates (2.13), (2.14) of [10] that, for any t ∈]0, T [, and any k, � ∈ N, there holds

tk+ �
2+ 1

2 ‖∂k
t ∇�

xu(t)‖L∞(Ω) + t
3
2 ‖∇ωθ(t)‖L∞(Ω) ≤ C0. (2.4)

Combining the conclusions of Corollary 2.9, 2.10 and Remark 2.11 in [10], we prove the following.

Proposition 2.1. For any T > 0, if ωθ ∈ C
(
(0, T ), L1(Ω) ∩ L∞(Ω)

)
is a mild solution of (1.2) on (0, T )

satisfying (1.4), then for any t ∈ (0, T ) and (r, z) ∈ Ω, we have

ωθ(t, r, z) ≥ 0, ‖ωθ(t)‖L1(Ω) ≤ ‖μ‖tv and lim
t→0

‖ωθ(t)‖L1(Ω) = ‖μ‖tv. (2.5)

Moreover, for any bounded and continuous function φ on Ω, there holds the convergence∫

Ω

φ(r, z)ωθ(t, r, z) drdz →
∫

Ω

φ dμ, as t → 0. (2.6)
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Noting that although the initial measure μ is no longer a single Dirac mass as considered in [10], it
is still supported in

[
min1≤i≤n ri,max1≤i≤n ri

]× R. Thus the estimates of Proposition 3.1, 3.3 and then
Lemma 3.8 in [10] still hold for the case here. Precisely, we have

∫ T

0

‖ur(t)/r‖L∞(Ω) dt ≤ C0. (2.7)

Next, let us state a particular case of Aronson’s pioneering work [2] on the fundamental solution of
parabolic equations, which will be a key ingredient in our decomposition.

Proposition 2.2 (Proposition 3.9 of [10]). Assume that U, V : (0, T ) × R
3 → R

3 are continuous functions
such that div U(t, ·) = 0, for all t ∈ (0, T ) and

sup
0<t<T

t
1
2 ‖U(t, ·)‖L∞(R3) = K1 < ∞,

∫ T

0

‖V (t, ·)‖L∞(R3) dt = K2 < ∞.

Then the regular solutions of the following type advection-diffusion equation

∂tf + U · ∇f − V f = Δf, x ∈ R
3, t ∈ (0, T ), (2.8)

can be represented in the following way:

f(t, x) =
∫

R3
ΦU,V (t, x; s, y)f(s, y) dy, x ∈ R

3, 0 < s < t < T,

where ΦU,V is the (uniquely defined) fundamental solution, which satisfies for all x, y ∈ R
3 and 0 < s <

t < T

0 < ΦU,V (t, x; s, y) ≤ C

(t − s)
3
2

exp
(
−|x − y|2

4(t − s)
+ K1

|x − y|√
t − s

+ K2

)
. (2.9)

It is easy to derive the evolution equation for ω = ωθ(t, r, z)eθ from (1.1) that

∂tω + u · ∇ω − r−1urω = Δω, x ∈ R
3, t ∈ (0, T ), (2.10)

which is exactly of the form (2.8) with U = u, V = r−1ur. In view of (2.4) and (2.7), the conditions of
Proposition 2.2 are satisfied. Thus this ω can be represented as

ω(t, x) =
∫

R3
Φ(t, x; s, y)ω(s, y) dy, x ∈ R

3, 0 < s < t < T.

We denoted above by Φ the fundamental solution ΦU,V where U = u, V = r−1ur. From which, we can
deduce that ωθ satisfies

ωθ(t, r, z) =
∫

Ω

Φ̃(t, r, z; s, r′, z′)ωθ(s, r′, z′) dr′dz′, 0 < s < t < T, (2.11)

where

Φ̃(t, r, z; s, r′, z′) =
∫ π

−π

Φ
(
t, (r, 0, z); s, (r′ cos θ, r′ sin θ, z′)

) · r′ cos θ dθ.

Using the Gaussian upper bound (2.9) of the fundamental solution Φ, we get

Lemma 2.2 (Lemma 3.10 of [10]). For any η ∈]0, 1[ and 0 < s < t < T , there exists some positive constant
Cη,α depending only on the choice of η and (αi)n

i=1, such that

0 < Φ̃(t, r, z; s, r′, z′) ≤ Cη,α

t − s

∣∣∣r
′

r

∣∣∣
1
2
H̃
( t − s

(1 − η)rr′
)
e− 1−η

4(t−s)

(
(r−r′)2+(z−z′)2

)
, (2.12)

where H̃ : (0,∞) → R is decreasing, satisfies H̃(τ) ≤ 1/
√

πτ and H̃(τ) → 1 as τ → 0 and H̃(τ) ∼ 1/
√

πτ
as τ → ∞.

This Gaussian upper bound immediately transfers to ωθ.
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Proposition 2.3. For any η ∈]0, 1[, (r, z) ∈ Ω and 0 < t < T , we have

0 < ωθ
i (t, r, z) ≤ Cη,α

t
e− 1−η

4t

(
(r−ri)

2+(z−zi)
2
)
. (2.13)

Proof. Using (2.12), we immediately get

0 < ωθ
i (t, r, z) ≤ Cη,α

t

∣∣∣ri

r

∣∣∣
1
2
H̃

(
t

(1 − η)rri

)
e− 1−η

4t ((r−ri)
2+(z−zi)

2). (2.14)

When 2r ≤ ri, using the facts H̃(τ) ≤ 1/
√

πτ and 2|ri − r| ≥ ri in this case gives

∣∣∣ri

r

∣∣∣
1
2
H̃

(
t

(1 − η)rri

)
≤ ri√

π

(
1 − η

t

) 1
2

≤ Cη,α · e
η(1−η)

4t (r−ri)
2
.

Substituting this into (2.14), and noting the fact that, when η runs over ]0, 1[, (1 − η)2 also runs over
]0, 1[, gives exactly (2.13) in this case.

And when 2r > ri, (2.13) follows by simply bounding H̃ by 1 in (2.14). �

We would now like to take the limit s → 0 in Eq. (2.11), in order to decompose the full solution ωθ

into the contributions ωθ
1 , . . . , ωθ

n coming from the n vortex filaments. Keeping in mind the convergence
ωθ(s, ·) ⇀ μ as s → 0, we need at least the uniform continuity of Φ̃ in its last variable (r′, z′) up to the
time boundary s = 0. This uniform continuity will stem from a uniform Hölder estimate on the original
fundamental solution Φ, which we now state and prove.

Lemma 2.3. The fundamental solution Φ is Hölder continuous in its last variable. More precisely, for
every ε > 0 there exists a strictly positive α such that for any fixed x in R

3 and any fixed t, s in R
∗
+

with t− s > ε, the function y �→ Φ(t, x; s, y) belongs to Cα(R3). Moreover, the implied continuity constant
depends solely on ε and ‖U‖L∞

t (L∞)−1
x

.

Remark 2.1. The space (L∞)−1 is defined as the space of all functions U which can be written as
derivatives of L∞ functions, i.e. for which there exist U1, U2 and U3 such that

U = ∂1U
1 + ∂2U

2 + ∂3U
3.

A choice of norm on this space is given (for instance) by

‖U‖(L∞)−1 = inf
(U1,U2,U3)

(‖U1‖L∞ + ‖U2‖L∞ + ‖U3‖L∞) ,

the infimum being taken on all choices of (U1, U2, U3) satisfying

U = ∂1U
1 + ∂2U

2 + ∂3U
3.

The space L∞
t (L∞)−1

x is then defined in an obvious way.

The idea of the proof is rather simple : we know that the corresponding result holds whenver the vector
field V is identically zero. Hence, using a Grönwall argument, we can transfer the regularity statement
to the general case. We begin by recalling some of the main results of H. Osada.

Theorem 2.1 (Theorems 1 and 2 in [12]). Let U : R
3 → R

3 be a divergence free vector field. If U belongs
to L∞

t (L∞)−1
x , then the equation

∂tf + U · ∇f − Δf = 0

possesses a regular fundamental solution, Φ0. This fundamental solutions satisfies the following properties.
(1) For any s < t and x, y in R

3, there holds
∫

R3
Φ0(t, y; s, x)dx =

∫

R3
Φ0(t, y; s, x)dy = 1.
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(2) There exists constants C1, C2, C3, C4 such that for any s < t and x, y in R
3,

C1(t − s)− 3
2 exp

(
−C2

|x − y|2
t − s

)
≤ Φ0(t, x; s, y) ≤ C3(t − s)− 3

2 exp
(

−C4
|x − y|2
t − s

)
.

(3) There exists a strictly positive α such that for any ε > 0, there exists C > 0 depending only on ε and
‖U‖L∞

t (L∞)−1
x

such that for every x, x′, y, y′ in R
3 and every t, t′, s, s′ in R

∗
+ satisfying t−s, t′−s′ > ε,

there holds

|Φ0(t, x; s, y) − Φ0(t′, x′; s′, y′)| ≤ C(|x − x′|α + |y − y′|α + |t − t′|α
2 + |s − s′|α

2 ).

Of course, the results of H. Osada are stronger than the one we seek, though we will not need their
full strength to achieve our goal.

We now state a Grönwall formula relating Φ and Φ0.

Lemma 2.4. For 0 < s < t and x, y in R
3, The function Φ satisfies the equality

Φ(t, x; s, y) = Φ0(t, x; s, y) +
∫ t

s

∫

R3
Φ0(t, x; s′, z) [V (s′, z)Φ(s′, z; s, y)] dzds′. (2.15)

Proof. Let us denote by Ψ(t, x; s, y) the right-hand side of the equality. As functions of (t, x) with (s, y)
kept fixed, both Ψ ans Φ solve the affine equation

∂tf + U · ∇f − Δf = V Φ.

Furthermore, they both satisfy

Φ(t, ·; s, y),Ψ(t, ·; s, y) ⇀ δy as t → s.

Since the vector fields U and V are smooth in space and time as long as 0 < s < t, equality ensues. �

We will conclude by appealing to the characterization of the Hölder space Cα(R3) as the Besov space
Bα

∞,∞ and the (dyadic, inhomogeneous) Littlewood-Paley decomposition.

Proof of Lemma 2.3. For j in N, let Δj be Littlewood-Paley projection around frequency 2j . Applying
Δj to each side of Eq. (2.15) in the last space variables gives

ΔjΦ(t, x; s, y) = ΔjΦ0(t, x; s, y) +
∫ t

s

∫

R3
Φ0(t, x; s′, z) [V (s′, z)(ΔjΦ(s′, z; s, y))] dzds′. (2.16)

Taking absolute values and the supremum in y on each side, we get

‖ΔjΦ(t, x; s, ·)‖L∞
y

≤ ‖ΔjΦ0(t, x; s, ·)‖L∞
y

+
∫ t

s

∫

R3
Φ0(t, x; s′, z)

[
‖V (s′)‖L∞

x
‖ΔjΦ(s′, z; s, ·)‖L∞

y

]
dzds′. (2.17)

Taking the supremum in x for the Φ0 term outside the integral and the supremum in z for the Φ term
inside the integral gives

‖ΔjΦ(t, x; s, ·)‖L∞
y

≤ ‖ΔjΦ0(t, ·; s, ·)‖L∞
x,y

+
∫ t

s

∫

R3
Φ0(t, x; s′, z)

[
‖V (s′)‖L∞

x
‖ΔjΦ(s′, ·; s, ·)‖L∞

x,y

]
dzds′. (2.18)

Since Φ0 has unit mass in the z variable, the above estimate simplifies itself into

‖ΔjΦ(t, x; s, ·)‖L∞
y

≤ ‖ΔjΦ0(t, ·; s, ·)‖L∞
x,y

+
∫ t

s

‖V (s′)‖L∞
x

‖ΔjΦ(s′, ·; s, ·)‖L∞
x,y

ds′. (2.19)

The right-hand side does not depend anymore on x; hence, we may take the supremum in x in the
left-hand side, leading to

‖ΔjΦ(t, ·; s, ·)‖L∞
x,y

≤ ‖ΔjΦ0(t, ·; s, ·)‖L∞
x,y

+
∫ t

s

‖V (s′)‖L∞
x

‖ΔjΦ(s′, ·; s, ·)‖L∞
x,y

ds′. (2.20)
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An immediate application of the Grönwall inequality yields

‖ΔjΦ(t, ·; s, ·)‖L∞
x,y

≤ ‖ΔjΦ0(t, ·; s, ·)‖L∞
x,y

exp
(
‖V ‖L1

t L∞
x

)
(2.21)

and since ‖V ‖L1
t L∞

x
< ∞, the result follows. �

As an immediate consequence, the averaged fundamental solution Φ̃ is now unambiguously defined
and Hölder continuous (with a possibly smaller exponent) at s = 0.

Let us write (2.11) in the following way

ωθ(t, r, z) =
∫

Ω

Φ̃(t, r, z; 0, r′, z′)ωθ(s, r′, z′) dr′dz′

+
∫

Ω

(
Φ̃(t, r, z; s, r′, z′) − Φ̃(t, r, z; 0, r′, z′)

)
ωθ(s, r′, z′) dr′dz′.

Combining the Hölder continuity of Φ̃ in (r′, z′) with the Gaussian upper bound on ωθ and Φ̃, we
know the second integral in the right-hand side converges to 0 as s tends to 0. On the other hand, since
(r′, z′) �→ Φ̃(t, r, z; 0, r′, z′) is a continuous and bounded function for each (t, r, z), we may use Eq. (2.6).
Taking the limit s → 0 yields

ωθ(t, r, z) =
∫

Ω

Φ̃(t, r, z; 0, r′, z′) dμ(r′, z′).

Recalling μ =
∑n

i=1 αiδxi
, the full vorticity ωθ decomposes as follows.

ωθ(t, r, z) =
n∑

i=1

ωθ
i (t, r, z), where ωθ

i (t, r, z) = αiΦ̃(t, r, z; 0, ri, zi). (2.22)

Correspondingly, the decomposition for u = BS[ωθ] writes

u(t, r, z) =
n∑

i=1

ui(t, r, z), where ui = BS[ωθ
i ]. (2.23)

It is easy to see that ωθ
i ∈ C

(
]0, T [, L1(Ω) ∩ L∞(Ω)

)
is a mild solution of

⎧⎨
⎩

∂tω
θ
i + u · ∇ωθ

i − (∂2
r + ∂2

z +
1
r
∂r − 1

r2

)
ωθ

i = 0, (t, r, z) ∈]0, T [×Ω,

ωθ
i ⇀ αiδxi

as t → 0.
(2.24)

Moreover, we have the following estimates for ωθ
i .

Proposition 2.4.
(i) ‖ωθ

i (t)‖L1(Ω) ≤ ‖μ‖tv and lim
t→0

‖ωθ
i (t)‖L1(Ω) = αi. (2.25)

(ii) There exists some positive time t1 < T , such that for any 0 < t < t1, there holds

t
3
2 ‖∇ωθ

i (t)‖L∞(Ω) ≤ C0. (2.26)

Proof. (i) To prove (2.25), notice that ωθ
i > 0 and ωθ =

∑n
i=1 ωθ

i , we have
n∑

i=1

‖ωθ
i (t)‖L1(Ω) = ‖ωθ(t)‖L1(Ω) ≤ ‖μ‖tv, ∀t ∈]0, T [, (2.27)

which in particular implies ‖ωθ
i (t)‖L1(Ω) ≤ ‖μ‖tv. By taking limit t → 0 in (2.27), we obtain

n∑
i=1

lim
t→0

‖ωθ
i (t)‖L1(Ω) = lim

t→0
‖ωθ(t)‖L1(Ω) = ‖μ‖tv =

n∑
i=1

αi.
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On the other hand, the initial condition ωθ
i ⇀ αiδxi

as t → 0 implies

lim
t→0

‖ωθ
i (t)‖L1(Ω) ≥ αi.

Combining the above two sides, clearly there must hold

lim
t→0

‖ωθ
i (t)‖L1(Ω) = αi.

(ii) For any 0 < t < T , we first write (2.24) in the integral form as

ωθ
i (t) = S(t/2)ωθ

i (t/2) −
∫ t

t/2

S(t − s) div∗
(
u(s)ωθ

i (s)
)
ds. (2.28)

Then we need the following lemma.

Lemma 2.5. For any 1 ≤ p ≤ q ≤ ∞, and f(r, z) ∈ Lp(Ω), there holds

‖∇S(t)f‖Lq(Ω) ≤ C

t
1
2+ 1

p − 1
q

‖f‖Lp(Ω), (2.29)

Proof. By using (2.2), let us first write the explicit formula of ∇S(t)f as

(∂r, ∂z) (S(t)f) =
1

4πt

∫

Ω

r̄
1
2

r
1
2

exp
(

− (r − r̄)2 + (z − z̄)2

4t

)
· f(r̄, z̄)

·
(

− t

r2r̄
H ′
(

t

rr̄

)
−
(

1
2r

+
r − r̄

2t

)
H

(
t

rr̄

)
,

−z − z̄

2t
H

(
t

rr̄

))
dr̄ dz̄. (2.30)

Let us denote

B1(r, z, r̄, z̄) def=

(
t

r
5
2 r̄

1
2

∣∣∣∣H ′
(

t

rr̄

)∣∣∣∣+
r̄

1
2

r
3
2

∣∣∣∣H
(

t

rr̄

)∣∣∣∣
)

exp
(

− (r − r̄)2 + (z − z̄)2

4t

)
,

B2(r, z, r̄, z̄) def=
r̄

1
2

r
1
2

(∣∣∣∣
r − r̄

2t
H

(
t

rr̄

)∣∣∣∣+
∣∣∣∣
z − z̄

2t
H

(
t

rr̄

)∣∣∣∣
)

exp
(

− (r − r̄)2 + (z − z̄)2

4t

)
.

When r̄ ≤ 2r, we deduce from the bound for H and H ′ that

B1 �
(

t

r
5
2 r̄

1
2

∣∣∣rr̄
t

∣∣∣
3
2

+
r̄

1
2

r
3
2

∣∣∣rr̄
t

∣∣∣
1
2

)
· exp

(
− (r − r̄)2 + (z − z̄)2

4t

)

� 1
t
1
2

· exp
(

− (r − r̄)2 + (z − z̄)2

4t

)
,

and

B2 �
(∣∣∣∣

r − r̄

2t

∣∣∣∣+
∣∣∣∣
z − z̄

2t

∣∣∣∣
)

· exp
(

− (r − r̄)2 + (z − z̄)2

4t

)

� 1
t
1
2

· exp
(

− (r − r̄)2 + (z − z̄)2

5t

)
,

While for the case r̄ > 2r, there holds r̄ < 2|r̄ − r|, thus we can get

B1 �
(

t

r
5
2 r̄

1
2

∣∣∣rr̄
t

∣∣∣
5
2

+
r̄

1
2

r
3
2

∣∣∣rr̄
t

∣∣∣
3
2

)
· exp

(
− (r − r̄)2 + (z − z̄)2

4t

)

� r̄2

t
3
2

·
(

t

(r − r̄)2 + (z − z̄)2

)
· exp

(
− (r − r̄)2 + (z − z̄)2

5t

)

� 1
t
1
2

· exp
(

− (r − r̄)2 + (z − z̄)2

5t

)
,
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and

B2 � r̄
1
2

r
1
2

(∣∣∣∣
r − r̄

2t

∣∣∣∣
∣∣∣rr̄

t

∣∣∣
1
2

+
∣∣∣∣
z − z̄

2t

∣∣∣∣
∣∣∣rr̄

t

∣∣∣
1
2

)
· exp

(
− (r − r̄)2 + (z − z̄)2

4t

)

� 1
t
1
2

· exp
(

− (r − r̄)2 + (z − z̄)2

5t

)
,

Combining the above estimates, we always have

B1(r, z, r̄, z̄) + B2(r, z, r̄, z̄) � 1
t
1
2

· exp
(

− (r − r̄)2 + (z − z̄)2

5t

)
. (2.31)

Then (2.29) comes from (2.30), (2.31), and Young’s inequality. �

Using (2.28) and (2.29), together with the bounds (2.4) and (2.5), as well as the pointwise bound
ωθ

i ≤ ωθ, we achieve

‖∇ωθ
i (t)‖L ∞(Ω) ≤ C

t3/2
‖ωθ

i (t/2)‖L1(Ω) +
∫ t

t
2

C

(t − s)1/2

(‖∇u(s)‖L∞(Ω)‖ωθ
i (s)‖L∞(Ω)

+ ‖u(s)‖L∞(Ω)‖∇ωθ
i (s)‖L∞(Ω)

)
ds

≤ C0

t3/2
‖μ‖tv +

∫ t

t
2

C0

(t − s)1/2

(
1
s2

+
1√
s

· s
1
2 ‖u(s)‖L∞(Ω)‖∇ωθ

i (s)‖L∞(Ω)

)
ds

≤ C0

t3/2
(1 + ‖μ‖tv) +

∫ t

t
2

1
s2

C0

(t − s)1/2

(
s

1
2 ‖u(s)‖L∞(Ω)s

3
2 ‖∇ωθ

i (s)‖L∞(Ω)

)
ds.

Multiplying both sides by t3/2, we get

t
3
2 ‖∇ωθ

i (t)‖L∞(Ω) ≤ C0(1 + ‖μ‖tv) +
∫ t

t
2

t
3
2

s
3
2

C0√
s(t − s)

(
s

1
2 ‖u(s)‖L∞(Ω)s

3
2 ‖∇ωθ

i (s)‖L∞(Ω)

)
ds.

Hence, an applicaton of Grönwall’s inequality to the function t �→ t
3
2 ‖∇ωθ

i (t)‖L∞(Ω) yields

t
3
2 ‖∇ωθ

i (t)‖L∞(Ω) ≤ C0(1 + ‖μ‖tv) exp

(∫ t

t
2

t
3
2

s
3
2

C0√
s(t − s)

(
s

1
2 ‖u(s)‖L∞(Ω)

)
ds

)
.

Owing to the bound (2.4), we finally have

t
3
2 ‖∇ωθ

i (t)‖L∞(Ω) ≤ C0(1 + ‖μ‖tv) exp

(∫ t

t
2

t
3
2

s
3
2

C0√
s(t − s)

ds

)
< ∞.

This gives exactly the desired estimate (2.26). �

2.2. Self-similar Variables

In view of (2.13), we know that ωθ
j concentrates in a self-similar way around xj for short time. Thus it

is very natural to introduce the self-similar variables:

Rj =
r − rj√

t
, Zj =

z − zj√
t

, Xj =
x − xj√

t
and εj =

√
t

rj
, j = 1, . . . , n. (2.32)

Correspondingly, for any j ∈ {1, . . . , n}, t ∈ (0, T ) and any (r, z) ∈ Ω, we set

ωθ
j (t, r, z) =

αj

t
fj

(
t,

r − rj√
t

,
z − zj√

t

)
, uj(t, r, z) =

αj√
t
Uj

(
t,

r − rj√
t

,
z − zj√

t

)
. (2.33)
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In the new coordinates (Rj , Zj), the domain constraint r > 0 translates into rj +
√

tRj > 0, which means
that the rescaled vorticity fj(t, Rj , Zj) is defined in the time-dependent domain

Ωεj

def=
{
(Rj , Zj) ∈ R

2 | 1 + εjRj > 0
}

.

Noting that uj = BS[ωθ
j ], thus Uj can also be determined by fj . Recalling the subsection 4.2 of [10], we

have the following explicit representation

Ur
j (Xj) =

1
2π

∫

Ωεj

√
(1 + εjR′)(1 + εjRj)−1F1(ξ2

j )
Zj − Z ′

|Xj − X ′|2 fj(X ′) dX ′,

Uz
j (Xj) = − 1

2π

∫

Ωεj

√
(1 + εjR′)(1 + εjRj)−1F1(ξ2

j )
Rj − R′

|Xj − X ′|2 fj(X ′) dX ′

+
εj

4π

∫

Ωεj

√
(1 + εjR′)(1 + εjRj)−3

(
F1(ξ2

j ) + F2(ξ2
j )
)
fj(X ′) dX ′,

(2.34)

where F1, F2 is some kernel satisfying sσ1F1(s), sσ2F2(s) are bounded on ]0,∞[ whenever 0 ≤ σ1 ≤
3/2, 0 < σ2 ≤ 3/2, and ξ2

j is a shorthand notation for the quantity

ξ2
j = ε2j |Xj − X ′|2(1 + εjRj)−1(1 + εjR

′)−1.

We denote this map from fj to Uj by Uj = BSεj [fj ]. We use the superscript εj since in the new variables,
the map depends explicitly on time through the parameter εj .

In the rest of this paper, the following notations will also be used:

R =
r − ri√

t
, Z =

z − zi√
t

, X =
x − xi√

t
and ε =

√
t

ri
, (2.35)

here although R, Z, X, ε indeed depend on i, we omit the index i for notation simplification.
After this blow-up procedure, the gaussian bound on ωi given by (2.13) translates into

0 < fi(t, R, Z) ≤ Cη,αe− 1−η
4 (R2+Z2), (2.36)

and (2.25) translates into ∫

Ωε

fi(t, R, Z) dRdZ → 1, as t → 0. (2.37)

We can use the estimate (2.36) to derive the pointwise estimate for U ε
i . First, recalling the proof of

Proposition 2.3 in [9], which shows that for any (r, z) ∈ Ω, there holds

|u(r, z)| ≤ C

∫

Ω

1√
(r − r′)2 + (z − z′)2

|ωθ(r′, z′)| dr′dz′.

Then using the self-similar variables (2.32), we obtain

|Ui(t, R, Z)| ≤ C

∫

Ωεi

1√
(R − R′)2 + (Z − Z ′)2

fi(t, R′, Z ′) dR′dZ ′

Finally substituting (2.36) with some fixed η into this, leads to(
1 + |R| + |Z|)|Ui(t, R, Z)| ≤ C0. (2.38)

Using the notation (2.33), let us also do this self-similar blow-up of the whole velocity u near the point
xi ∈ Ω and near the initial time t = 0, and we get

u(t, r, z) =
αi√

t
Ui(t, R, Z) +

∑
j �=i

αj√
t
Uj

(
t, R +

ri − rj√
t

, Z +
zi − zj√

t

)
. (2.39)

In view of (2.38), let t → 0 and R, Z fixed, all Uj

(
t, R + ri−rj√

t
, Z + zi−zj√

t

)
for j = i vanish, since

they are localized far away from the center of the blow-up procedure and decay exponentially fast, in
particular much faster than the multiplicative term αi√

t
and only Ui(t, R, Z) remains. Thus after this
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blow-up procedure, the convection term can be very close to Ui · ∇fi, for a short time. Combining with
the fact that the initial measure for ωi = ωθ

i eθ is αiδxi
, hence if we believe in uniqueness, it is reasonable

to expect that, for a short time, ωi will be very close to an Oseen vortex located at xi with circulation
αi.

In order to write this observation precisely, let us denote the following functions on R
2:

w(x, y) def= e(|x|2+|y|2)/4, G(x, y) def=
1
4π

e−(|x|2+|y|2)/4, (x, y) ∈ R
2,

and denote by X the weighted space L2(R2, w(x, y)dxdy). We have:

Proposition 2.1. For any i ∈ {1, . . . , n}, we have ‖f i(t, ·) − G(·)‖X → 0 as t goes to 0, where f i denotes
the extension of fi by zero outside Ωε.

Proof. First, let us denote by X0 a subspace of X , which is defined by the stronger norm

‖f‖X0

def= ‖fw1−η‖L∞(R2) + ‖∇f‖L∞(R2),

where η is a real number satisfying 0 < η < 1
2 . We have:

Lemma 2.1 (Lemma 4.4 in [10]). The space X0 is compactly embedded in X , and the unit ball in X0 is
closed for the topology induced by X .

In the self-similar variables, the gradient bound for ωθ
i , namely (2.26), translates into

‖∇f i(t)‖L∞(R2) < ∞, ∀t ∈]0, T [.

Combining this with the gaussian bound for fi, (2.36), we know that, (f i(t))0<t<T is a bounded subset
of X0, hence compact in X . Let h∗ be an accumulation point in X of (f i(t))0<t<T as t goes to 0, and
(tm)m∈N be the corresponding sequence of positive time satisfying

tm → 0, ‖f i(tm) − h∗‖X → 0 as m → ∞. (2.40)

Now, let us temporarily consider the whole 3-D vorticity field ω and the whole 3-D velocity field u.
For any m ∈ N, y ∈ R

3, and s ∈]0, t−1
m T [, we define the following sequence

{
u(m)(s, y) =

√
tmu(tms, xi +

√
tmy)

ω(m)(s, y) = tmω(tms, xi +
√

tmy),

where xi = (ri, 0, zi) ∈ R
3. In other words, the vector fields ω(m), u(m) are defined by a self-similar

blow-up of the original quantities ω, u near the point xi ∈ R
3 and near the initial time t = 0. It is easy

to verify that ω, u satisfy the 3-D vorticity equation:

∂sω
(m) + u(m) · ∇ω(m) − Δω(m) = ω(m) · ∇u(m), div u(m) = 0, curl u(m) = ω(m),

for s ∈]0, t−1
m T [, y ∈ R

3. The self-similar rescaling from u to u(m) preserves the bounds given by (2.4),
precisely for all indices k, � ∈ N, we have the following a priori estimates

‖∂k
s ∇�

yu(m)(s)‖L∞(R3) ≤ C0s
−
(

1
2+k+ �

2

)
, s ∈]0, t−1

m T [,

which holds uniformly in m. Hence, up to an extraction, we can assume that

ω(m) → ω, u(m) → u, as m → ∞,

with uniform convergence of both vector fields along with all their derivatives on any compact subset of
]0, t−1

m T [× R
3. Thus the limiting fields ω, u are smooth and satisfy

∂sω + u · ∇ω − Δω = ω · ∇u, div u = 0, curlu = ω. (2.41)
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The goal now is to relate ω to ωi and f i. The idea is that the other ωj , f j (j = i) should be eliminated
by the blow-up procedure. Using the definitions, we get

ω(m)(s, y) = tmω(tms, xi +
√

tmy)

= tmω(tms,

√
(ri +

√
tmy1)2 + tmy2

2 , 0, zi +
√

tmy3)

=

⎛
⎝αi

s
f i(tms,X

(m)
ii (s, y)) +

∑
j �=i

αj

s
f j

(
tms,X

(m)
ij (s, y)

)
⎞
⎠ eθ(xi +

√
tmy),

(2.42)

where

X
(m)
ij (s, y) def=

(√
(ri +

√
tmy1)2 + tmy2

2 − rj√
tms

,
zi − zj +

√
tmy3√

tms

)
.

If i = j, for any bounded subset B ⊂ R
3 and any y ∈ B, there exists a large constant NB , such that for

any m > NB , there holds

|X(m)
ij (s, y)|2 ≥ (ri − rj)2 + (zi − zj)2

2tms
.

Then the gaussian bound for fj (2.36) entails

0 ≤ f j

(
tms,X

(m)
ij (s, y)

)
≤ Cη,α exp

{
− (1 − η)|xi − xj |2

8tms

}
.

Hence, the only contribution in the limit procedure m → ∞ comes, as expected, from the i-th circular
vortex. Regarding f i, as shown before, f i(·, ·, t) is bounded in X0. Thus for any fixed s > 0, up to another
extraction, there must exist some hs ∈ X such that

‖f i(tms) − hs‖X → 0 as m → ∞. (2.43)

The boundedness of (f i(tms))m in X0 implies that, this convergence of (f i(tms))m to hs also holds
uniformly on any compact set of R

3. Therefore, taking the limit m → ∞ on both sides of (2.42) and
noting that eθ(xi) = e2 = (0, 1, 0), we obtain

ω(s, y) =
αi

s
hs

(
y1√
s
,

y3√
s

)
e2

def= (0, ω2(s, y1, y3), 0).

Taking the limit m → ∞ in (2.36) and (2.37), we deduce

|ω2(s, y1, y3)| � Cη,αs−1e− 1−η
4s |y|2 ,

∫

R2
ω2(s, y1, y3) dy1dy3 = αi. (2.44)

We now turn to the velocity field. Similarly as (2.42), we can write

u(m)(s, y) =
αi√

s
U ε

i

(
tms,X

(m)
ii (s, y)

)
+
∑
j �=i

αj√
s
U ε

j (tms,X
(m)
ij (s, y)). (2.45)

In view of (2.38), as tm → 0, all U ε
j (tms,X

(m)
ij (s, y)) for j = i vanish, and only U ε

i (tms,X
(m)
ii (s, y))

remains. Regarding Ui, using (2.38) again and taking the limit m → ∞, we get

|u(s, y)| � (
√

s + |y1| + |y3|)−1. (2.46)

Moreover, as shown in (2.41), u satisfies the following elliptic system

div u = 0, curl u = ω.

This div-curl system has at most one solution with the decay property (2.46), hence

u(s, y) = u1(s, y1, y3)e1 + u3(s, y1, y3)e3 = (u1(s, y1, y3), 0, u3(s, y1, y3)),

where (u1, u3) is the two dimensional velocity field obtained from the scalar vorticity ω2 via the Biot-
Savart law in R

2.
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Summarizing, we have shown that the limiting vorticity ω2, together with the associated velocity
(u1, u3) solves the 2-D Navier–Stokes equations, and it follows from (2.44) that ω2(s, ·) is uniformly
bounded in L1(R2) and converges weakly to the Dirac measure αiδ0 as s → 0. Then we deduce, by using
Proposition 1.3 in [11], that ω2(s, y1, y3) = αi

s G
(

y1√
s
, y3√

s

)
, i.e. hs = G for any s > 0. In particular,

choosing s = 1 so that tms = tm, and comparing (2.40) with (2.43), we conclude that h∗ = G, which is
the desired result. �

In view of Proposition 2.1, it is natural to make a further decomposition of ω. Let

d
def= min

1≤i<j≤n

{|xi − xj |, ri

}
,

and χ : [0,∞[→ [0, 1] to be a smooth non-increasing cutoff function such that χ = 1 on [0, 1/8] and χ
vanishes outside [0, 1/4]. Let f0 to be a function on ]0, T [× R

2 defined as

f0(t, x, y) def= G(x, y)χ
(√

t(x2 + y2)/d
)
, (x, y) ∈ R

2, t ∈]0, T [,

and f̃i to be a function on ]0, T [×Ωi
ε defined as

f̃i(t, R, Z) = fi(t, R, Z) − f0(t, R, Z), (R,Z) ∈ Ωε, t ∈]0, T [. (2.47)

Then we can decompose ωθ further as follows:

ωθ(t, r, z) =
n∑

j=1

(αj

t
f0(t, Rj , Zj) +

αj

t
f̃j(t, Rj , Zj)

)
. (2.48)

And correspondingly, u = BS[ωθ] can be decomposed further into

u(t, r, z) =
n∑

j=1

(
αj√

t
U0,j(t, Rj , Zj) +

αj√
t
Ũj(t, Rj , Zj)

)
, where

U0,j = BSεj [f0], Ũj = BSεj [f̃j ].

(2.49)

Remark 2.2. For any j ∈ {1, . . . , n}, due to the cutoff function χ, it is easy to see that f0(t, Rj , Zj)
vanishes when

√
tRj < − d/4, and thus vanishes when

√
tRj < − rj/4. In particular, this implies that

f0(t, Rj , Zj) satisfies the Dirichlet boundary condition on ∂Ωεj
, and thus f̃j(t, Rj , Zj) also satisfies the

Dirichlet boundary condition on ∂Ωεj
.

It is clear that f0(t) ∈ X for all t ∈]0, T [, and ‖f0(t) − G‖X → 0 as t → 0. Thus the perturbation
f̃j(t) (extended by zero outside Ωεj

) belongs to X for all t ∈]0, T [, and Proposition 2.1 implies that
‖f̃j(t)‖X → 0 as t → 0. We recall that the weighted L2 norm of X controls the standard L1 norm, by
a straightfroward application of the Hölder inequality. In the next section, we shall quantify this rate of
convergence.

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In view of the decomposition (2.48), to prove
the uniqueness claim in Theorem 1.1, we only need to show the perturbation part (f̃j)n

j=1 is uniquely
determined. At the end of last section, we have shown that ‖f̃j(t)‖X → 0 as t → 0, but this is not
enough to prove uniqueness. We shall give a more accurate quantitative rate of this convergence, which
in particular implies the short time estimate (1.5). This will be done in the first subsection.

After some modifications to the energy estimates in the proof of the short time estimate, we can prove
the uniqueness claim in Theorem 1.1. This will be done in the second subsection.
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3.1. Short Time Asymptotics

Using (2.24) and (2.33), we can derive the evolution equation satisfied by the rescaled vorticity fi reads

t∂tfi(t,X) + div∗
(
αiUi(t,X)fi(t,X) + Wi(t,X)fi(t,X)

)
= (Lfi)(t,X) + ∂R

(εfi(t,X)
1 + εR

)
, (3.1)

for X ∈ Ωε and t ∈]0, T [, where the operator L is defined for a generic function f by

Lf(X) def= ΔXf(X) +
X

2
· ∇Xf(X) + f(X),

the operator div∗ is defined for a generic vector field V (X) = V r(X)er + V z(X)ez by

div∗
(
V (X)

) def= ∂RV r(X) + ∂ZV z(X),

and Wi stands for the other parts of the rescaled velocity:

Wi(t,X) def=
∑
j �=i

αjUj(t,Xj), where Xj =
x − xj√

t
= X +

xi − xj√
t

.

Then we can deduce from (2.48), (2.49) and (3.1) that

t∂tf̃i + αi div∗(U0,if̃i + Ũif0 + Ũif̃i) + div∗(Wifi) = Lf̃i + ∂R

(
εf̃i

1 + εR

)
+ H, (3.2)

where

H = −t∂tf0 + Lf0 + ∂R

(εf0(t,X)
1 + εR

)
− αi div∗(U0,if0).

And we shall define, following [10], the two types of energy for each vortex

Ej(t)
def=

1
2

∫

Ωεj

f̃j(t,Xj)2w(Xj) dXj ,

Ej(t)
def=

1
2

∫

Ωεj

(
|∇f̃j(t,Xj)|2 + (1 + |Xj |2)f̃j(t,Xj)2

)
w(Xj) dXj ,

(3.3)

as well as the total energies

E(t) def=
n∑

j=1

Ej(t), E(t) def=
n∑

j=1

Ej(t).

As we have pointed out in Remark 2.2 that, f̃j satisfies the homogeneous Dirichlet condition on
∂Ωεj

, thus although the integral in (3.3) is taken over the time-dependent domain Ωεj
, there is no

contribution from the boundary when we differentiate with respect to time. Hence we can get, by doing
L2(Ωε, w(X)dX) energy estimate to (3.2) and integrating by parts, that

tE′
i(t) = Ai(t) + Ii(t), (3.4)

where

Ai(t) =
∫

Ωε

(
Lf̃i(t,X) + ∂R

(
εf̃i(t,X)
1 + εR

)
+ H(t,X)

−αi div∗(U0,if̃i + Ũif0 + Ũif̃i)(t,X)
)

f̃i(t,X) · w(X) dX,

Ii(t) =
∫

Ωε

Wi(t,X)fi(t,X)
(

∇X f̃i(t,X) +
X

2
f̃i(t,X)

)
· w(X) dX.

The main result of this subsection states as follows:
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Proposition 3.1. There exists some positive constant δ depending on the initial measure μ, such that for
t sufficiently small, there holds

tE′
i(t) ≤ −2δEi(t) + C0

√
t| ln t|Ei(t)

1
2 + CEi(t)

1
2 Ei(t) + Ri(t), (3.5)

where the quantity Ri satisfies the inequality 0 < Ri(t) ≤ e−C0/t.

Proof. Noting that the terms in Ai(t) are exactly the same as the ones appearing on the right-hand side
of the equality (4.42) in [10]. Thus using the Proposition 4.5 in [10], we know that there exists some
ε0 ∈]0, 1/2[, if t > 0 is small enough so that εi < ε0, then

Ai(t) ≤ −2δEi(t) + C
√

t| ln t|Ei(t)
1
2 + CEi(t)

1
2 Ei(t) + Ri(t). (3.6)

In the following we shall concentrate on the interaction part Ii(t). Using the decomposition (2.47) and
(2.49), we can write

Wi(t,X)fi(t,X) =
∑
j �=i

(
αjU0,j(t,Xj) + αjŨj(t,Xj)

)(
f0(t,X) + f̃i(t,X)

)
.

Thus there are two types of integral terms in Ii(t), which we handle separately.
Before proceeding, let us decompose Ωεj

into two parts, namely

Ω+
εj

def=
{

X ∈ Ωεj
s.t. |X| >

d

4
√

t

}
, Ω−

εj

def=
{

X ∈ Ωεj
s.t. |X| ≤ d

4
√

t

}
.

Type 1: Ii,1(t) =
∑

j �=i

∫
Ωε

αjUj(t,Xj)f0(t,X) · (∇X + X/2
)
f̃i(t,X) · w(X) dX.

Due to the cutoff function χ, we know that f0(t,X) vanishes whenever |X| > d
4
√

t
. Thus Ii,1(t) actually

only integrates on Ω−
ε , and for X in Ω−

ε , we have

|Xj | =
∣∣∣X +

xi − xj√
t

∣∣∣ ≥ 3d

4
√

t
.

Then the estimate (2.38) gives
Uj(t,Xj) ≤ C0

√
t. (3.7)

Thanks to this bound, the definition of f0, and Cauchy inequality, we get

|Ii,1(t)| ≤ C0

√
t
∑
j �=i

∫

Ω−
ε

e−|X|2/4

(
∇X f̃i(t,X) +

X

2
f̃i(t,X)

)
w(X) dX

≤ C0

√
t
∥∥∥e−|X|2/8

∥∥∥
L2(Ω−

ε )

∥∥∥(∇X + X/2) f̃i(t,X) · w(X)1/2
∥∥∥

L2(Ω−
ε )

≤ C0

√
tEi(t)

1
2 .

(3.8)

Type 2: Ii,2(t) =
∑

j �=i

∫
Ωε

αjUj(t,Xj)f̃i(t,X) · (∇X + X/2
)
f̃i(t,X) · w(X) dX.

We decompose Ii,2 into two different parts according to the integral domain. On Ω−
ε , by using the

bound (3.7) and Cauchy inequality again, we obtain
∣∣∣
∫

Ω−
ε

Uj(t,Xj)f̃i(t,X) · (∇X + X/2
)
f̃i(t,X) · w(X) dX

∣∣∣ ≤ C0

√
tEi(t)

1
2 Ei(t)

1
2 . (3.9)

To handle the integral on Ω+
ε , a mere application of (2.38) gives

‖Uj‖L∞
T (L∞(Ωεj

)) ≤ C0. (3.10)

And it follows from the Gaussian bound for fi (2.36) and the fact that f0 vanishes on Ω+
ε that, the same

Gaussian bound also holds for f̃i, precisely

0 < f̃i(t,X) ≤ Cη,αe− 1−η
4 |X|2 , ∀X ∈ Ω+

ε . (3.11)
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Using the above bounds (3.10) and (3.11) with η = 1
4 , we get

∣∣∣
∫

Ω+
ε

Uj(t,Xj)f̃i(t,X) · (∇X + X/2
)
f̃i(t,X) · w(X) dX

∣∣∣ ≤ C0‖f̃i(t)w
1
2 ‖L2(Ω+

ε )Ei(t)
1
2

≤ C0e
− d2

256t Ei(t)
1
2 .

Combining this with the estimate (3.9), we finally get

|Ii,2(t)| ≤ C0

√
tEi(t)

1
2 Ei(t)

1
2 + C0e

− d2
256t Ei(t)

1
2 . (3.12)

Substituting the estimates (3.6), (3.8), (3.12) and using the trivial bounds

Ei ≤ Ei ≤ E , Ei ≤ E

allows us to obtain

tE′
i(t) ≤ −2δEi(t) + C

√
t| ln t|Ei(t)

1
2 + CEi(t)

1
2 Ei(t) + Ri(t)

+ C0

√
tEi(t)

1
2 + C0

√
tEi(t)

1
2 Ei(t)

1
2 + C0e

− d2
256t Ei(t)

1
2 .

Recalling that E(t) goes to 0 as t goes to 0 yields the simplified bound

tE′
i(t) ≤ −2δEi(t) + C0

√
t| ln t|Ei(t)

1
2 + CEi(t)

1
2 Ei(t) + Ri(t),

which is the desired differential inequality. This completes the proof of this proposition. �

Proof of the estimate (1.5). Applying Young’s inequality to (3.5) gives

tE′
i(t) ≤ −3

2
δEi(t) + C0t| ln t|2 + CEi(t)

1
2 Ei(t) + Ri(t). (3.13)

Recalling that by definition εi =
√

t/ri and E(t) goes to 0 as t goes to 0, thus there exists some small
constant t0 depending only on the initial measure μ, such that both εi < ε0 and Ei(t)1/2 < δ/2 hold
whenever t < t0. Combining this with the facts that Ei ≤ Ei and 0 < Ri(t) ≤ e−C0/t, we can get from
(3.13), for t < t0, that

tE′
i(t) ≤ − δEi(t) + C0t| ln t|2 + Ri(t)

≤ − δEi(t) + C0t| ln t|2.
Integrating this differential inequality yields the bound

Ei(t) ≤ C0t
−δ

∫ t

0

sδ| ln s|2 ds ≤ C0t| ln t|2. (3.14)

Then in view of the definition (3.3), the above inequality leads to

‖fi(t) − f0(t)‖L1(Ωε) = ‖f̃i‖L1(Ωε) ≤ CE
1/2
i (t) ≤ C0

√
t| ln t|.

And since f0 is extremely close to G, we finally obtain

‖fi(t) − G‖L1(Ωε) ≤ ‖fi(t) − f0(t)‖L1(Ωε) + ‖f0(t) − G‖L1(Ωε)

≤ C0

√
t| ln t| + e−C0/t ≤ C0

√
t| ln t|. (3.15)

Returning to the original variables, and summing up over i, gives exactly the short time estimate (1.5)
for t < t0. �
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3.2. Uniqueness

The purpose of this final subsection is to prove the uniqueness result in Theorem 1.1. Assume that
ωθ,(1), ωθ,(2) ∈ C(]0, T [, L1(Ω)∩L∞(Ω)

)
are two mild solutions to the vorticity Eq. (1.2) satisfying (1.4).

Introducing the self-similar variables and decompose these two solutions just as what we have done in
Subsection 2.2, precisely for � = 1, 2, we write

ωθ,(�)(t, r, z) =
n∑

j=1

αj

t
f

(�)
j (t, Rj , Zj) =

n∑
j=1

(αj

t
f0(t, Rj , Zj) +

αj

t
f̃

(�)
j (t, Rj , Zj)

)
,

and correspondingly, u(�) = BS[ωθ,(�)] can be decomposed into

u(t, r, z)(�) =
n∑

j=1

αj√
t
U

(�)
j (t, Rj , Zj) =

n∑
j=1

(αj√
t
U0,j(t, Rj , Zj) +

αj√
t
Ũ

(�)
j (t, Rj , Zj)

)
.

The differences of the rescaled solutions will be denoted by

f̃Δ
i

def= f
(1)
i − f

(2)
i = f̃

(1)
i − f̃

(2)
i , ŨΔ

i
def= U

(1)
i − U

(2)
i = Ũ

(1)
i − Ũ

(2)
i .

The evolution equation for f̃Δ
i reads

t∂tf̃
Δ
i + αi div∗(U0,if̃

Δ
i + ŨΔ

i f0) + αi div∗(Ũ
(1)
i f̃

(1)
i − Ũ

(2)
i f̃

(2)
i )

+ div∗(W0,if̃
Δ
i + W̃Δ

i f0) + div∗(W̃
(1)
i f̃

(1)
i − W̃

(2)
i f̃

(2)
i ) = Lf̃Δ

i + ∂R

( εf̃Δ
i

1 + εR

)
,

(3.16)

where

W0,i(t,X) def=
∑
j �=i

αjU0,j(t,Xj), W̃
(�)
i (t,X) def=

∑
j �=i

αjŨ
(�)
j (t,Xj).

In analogy with (3.3), the energies for each solution are straightforwardly denoted by

E
(�)
j (t) def=

1
2

∫

Ωεj

f̃
(�)
j (t,Xj)2w(Xj) dXj , E(�)(t) def=

n∑
j=1

E
(�)
j (t),

E(�)
j (t) def=

1
2

∫

Ωεj

(
|∇f̃

(�)
j (t,Xj)|2 + (1 + |Xj |2)f̃ (�)

j (t,Xj)2
)
w(Xj) dXj , E(�)(t) def=

n∑
j=1

E(�)
j (t),

as well as the energies for the difference

EΔ
j (t) def=

1
2

∫

Ωεj

f̃Δ
j (t,Xj)2w(Xj) dXj , EΔ(t) def=

n∑
j=1

EΔ
j (t),

EΔ
j (t) def=

1
2

∫

Ωεj

(
|∇f̃Δ

j (t,Xj)|2 + (1 + |Xj |2)f̃Δ
j (t,Xj)2

)
w(Xj) dXj , EΔ(t) def=

n∑
j=1

EΔ
j (t).

In view of (3.14), combining with the elementary fact that EΔ
j ≤ 2

(
E

(1)
j + E

(2)
j

)
, we know that EΔ

j (t)

also decays to 0 with rate at least t| ln t|2 as t → 0. We believe that EΔ
j (t) decays faster than E

(�)
j since

the source H and div∗(W0,if0) has disappeared when taking the difference of the equations for f
(1)
i and

f
(2)
i . Precisely, we have:

Proposition 3.2. There exists a positive time t1 such that for all 0 < t < t1, there holds

EΔ(t) ≤ e−C0/t. (3.17)
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Proof. Similarly as in the proof of Proposition 3.1, by doing an L2(Ωε, w(X)dX) energy estimate to (3.16)
and integrating by parts, we obtain

t
d

dt
EΔ

i (t) = AΔ
i (t) + IΔ

i (t), (3.18)

where

AΔ
i (t) =

∫

Ωε

(
Lf̃Δ

i (t,X) + ∂R

(
εf̃Δ

i (t,X)
1 + εR

)
− αi div∗(U0,if̃

Δ
i + ŨΔ

i f0)

−αi div∗(Ũ
(1)
i f̃

(1)
i − Ũ

(2)
i f̃

(2)
i )
)

f̃Δ
i (t,X) · w(X) dX,

IΔ
i (t) =

∫

Ωε

(
W0,if̃

Δ
i + W̃Δ

i f0 + W̃
(1)
i f̃

(1)
i − W̃

(2)
i f̃

(2)
i

)
(t,X) · (∇X + X/2) f̃Δ

i (t,X) · w(X) dX.

First, the estimate (4.71) of [10] claims that there exists some positive constant δ and some ε0 ∈]0, 1[
such that as long as ε < ε0, there holds

AΔ
i (t) ≤ −2δEΔ

i (t) + C
(
E

(1)
i (t)

1
2 + E

(2)
i (t)

1
2
)EΔ

i (t) + RΔ
i (t), (3.19)

where the quantity RΔ
i satisfies the inequality 0 < RΔ

i (t) ≤ e−C0/t. We mention that the terms with
type C0

√
t| ln t|Ei(t)

1
2 in (3.6) does not appear here, due to the cancellation of the source term H when

taking the difference.
For the interaction part IΔ

i (t), thanks to the cancellation of div∗(W0,if0), there are only three types
of integral terms, which we handle separately in the following.
Type 1: IΔ

i,1(t) =
∫
Ωε

W0,i(t,X)f̃Δ
i (t,X) · (∇X + X/2

)
f̃Δ

i (t,X) · w(X) dX.

We decompose IΔ
i,1 into two different parts according to the integral domain. On Ω−

ε , we have the
pointwise estimate:

Lemma 3.1. For any j = i, and any Xj in Ω−
εj

(i.e. X in Ω−
ε ), we have

|U0,j(t,Xj)| ≤ C0

√
t.

Proof. Using the explicit formula (2.34), and the fact that f0 is supported inside Ω−
ε , we get

Ur
0,j(t,Xj) =

1
2π

∫

Ω−
ε

√
(1 + εjR′)(1 + εjRj)−1F1(ξ2

j )
Zj − Z ′

|Xj − X ′|2 f0(t,X ′) dX ′,

Uz
0,j(t,Xj) = − 1

2π

∫

Ω−
ε

√
(1 + εjR′)(1 + εjRj)−1F1(ξ2

j )
Rj − R′

|Xj − X ′|2 f0(t,X ′) dX ′

+
εj

4π

∫

Ω−
ε

√
(1 + εjR′)(1 + εjRj)−3

(
F1(ξ2

j ) + F2(ξ2
j )
)
f0(t,X ′) dX ′,

where

ξ2
j = ε2j |Xj − X ′|2(1 + εjRj)−1(1 + εjR

′)−1.

For X and X ′ in Ω−
ε , we have

|Xj − X ′| =
∣∣∣X − X ′ +

xi − xj√
t

∣∣∣ ∈
[

d

2
√

t
,
d + 2|xi − xj |

2
√

t

]
,

1 + εjR
′ ∈
[
3
4
,
5
4

]
, and 1 + εjRj =

ri

rj
+

√
tR

rj
∈
[

3ri

4rj
,
5ri

4rj

]
.

Using the above bounds and the fact that F1(s), s
1
2 F2(s) are bounded on ]0,∞[, we achieve

|U0,j(Xj)| ≤ C0

∫

Ω−
ε

√
te−|X′|2/4 dX ′ ≤ C0

√
t,

which completes the proof of this lemma. �
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A direct consequence of this lemma is that, W0,i(t,X) ≤ C0

√
t for any X ∈ Ω−

ε . Using this pointwise
bound and Cauchy inequality, we obtain

∣∣∣
∫

Ω−
ε

W0,i(t,X)f̃Δ
i (t,X) · (∇X + X/2

)
f̃Δ

i (t,X) · w(X) dX
∣∣∣ ≤ C0

√
tEΔ

i (t)
1
2 EΔ

i (t)
1
2 . (3.20)

To handle the integral on Ω+
ε , we need some more careful estimates on the rescaled velocity. After the

blow-up procedure (2.33), Proposition 2.3 of [9] translates into:

Lemma 3.2. (i) If 1 < p < 2 < q < ∞, 1
q = 1

p − 1
2 , then

‖BSε[f ]‖Lq(Ωε) ≤ C‖f‖Lp(Ωε). (3.21)

(ii) If 1 ≤ p < 2 < q ≤ ∞, then

‖BSε[f ]‖L∞(Ωε) ≤ C‖f‖σ
Lp(Ωε)

‖f‖1−σ
Lq(Ωε)

, where σ =
p

2
q − 2
q − p

∈]0, 1[. (3.22)

It follows from a mere application of (3.22) to a gaussian function that

‖W0,i‖L∞
T (L∞(Ωε)) ≤ C‖f0‖

1
2
L1‖f0‖

1
2
L∞ ≤ C. (3.23)

And it follows from the Gaussian bound for f
(�)
i (2.36) and the fact that f0 vanishes on Ω+

ε that, the
same Gaussian bound also holds for f̃

(�)
i , precisely

0 < f̃
(�)
i (t,X) ≤ Cη,αe− 1−η

4 |X|2 , ∀X ∈ Ω+
ε . (3.24)

Using the above bounds (3.23) and (3.24) with η = 1
4 , we get

∣∣∣
∫

Ω+
ε

W0,i(t,X)f̃Δ
i (t,X) · (∇X + X/2

)
f̃Δ

i (t,X) · w(X) dX
∣∣∣ ≤ C‖f̃Δ

i (t)w
1
2 ‖L2(Ω+

ε )EΔ
i (t)

1
2

≤ C0e
− d2

256t EΔ
i (t)

1
2 .

Combining this with the estimate (3.20), we finally get

|IΔ
i,1(t)| ≤ C0

√
tEΔ

i (t)
1
2 EΔ

i (t)
1
2 + C0e

− d2
256t EΔ

i (t)
1
2 . (3.25)

Type 2: IΔ
i,2(t) =

∫
Ωε

W̃Δ
i (t,X)f0(t,X) · (∇X + X/2

)
f̃Δ

i (t,X) · w(X) dX.

Noting that f0 supports only on Ω−
ε , and f0(X)w(X) ≤ 1 on Ωε, we get

|IΔ
i,2(t)| ≤

∫

Ω−
ε

∑
j �=i

∣∣αj(Ũ
(1)
j − Ũ

(2)
j )(t,Xj) · (∇X + X/2

)
f̃Δ

i (t,X)
∣∣ dX. (3.26)

Let us decompose Ũ
(�)
j as the sum of Ũ

(�),+
j and Ũ

(�),−
j , with

Ũ
(�),±
j (Xj)

def= BSεj
[
f̃

(�)
j (Xj)1Ω±

εj
(Xj)

]
,

where 1Ω±
ε

stands for the characteristic function of Ω±
ε .

Exactly along the proof of Lemma 3.1, we can get, for any X ∈ Ω−
ε , that

∣∣(Ũ (1),−
j − Ũ

(2),−
j

)(
X +

xi − xj√
t

)∣∣ ≤ C0

√
t

∫

Ω−
εj

∣∣f̃ (1)
j (X ′) − f̃

(2)
j (X ′)

∣∣ dX ′

≤ C0

√
t‖w−1/2‖L2EΔ

j (t)
1
2

≤ C0

√
tEΔ

j (t)
1
2 .
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Using this bound and the fact that L2
(
Ω−

ε , w(X)dX
)

↪→ L1(Ω−
ε , dX) , we achieve

∫

Ω−
ε

∑
j �=i

∣∣αj(Ũ
(1),−
j − Ũ

(2),−
j )(t,Xj) · (∇X + X/2

)
f̃Δ

i (t,X)
∣∣ dX

≤ C0

√
tEΔ(t)

1
2 EΔ

i (t)
1
2 .

(3.27)

For Ũ
(�),+
j , we use (3.21) with p = 4/3, q = 4, and Hölder’s inequality to obtain

∥∥Ũ (1),+
j − Ũ

(2),+
j

∥∥
L4(Ωεj

)
≤ C0

∥∥f̃ (1)
j − f̃

(2)
j

∥∥
L

4
3 (Ω+

εj )

≤ C0‖w−1/2‖L4(Ω+
εj )

∥∥(f̃ (1)
j − f̃

(2)
j

)
w1/2

∥∥
L2(Ω+

εj )

≤ C0e
−C0/tEΔ

j (t)
1
2 .

Using this estimate and Hölder’s inequality again, we achieve∫

Ω−
ε

∑
j �=i

∣∣αj(Ũ
(1),+
j − Ũ

(2),+
j )(t,Xj) · (∇X + X/2

)
f̃Δ

i (t,X)
∣∣ dX

≤
∑
j �=i

∥∥Ũ (1),+
j − Ũ

(2),+
j

∥∥
L4(Ω−

ε )
‖w−1/2‖L4(Ω−

ε )

∥∥(∇X + X/2
)
f̃Δ

i · w1/2
∥∥

L2(Ω−
ε )

≤ C0e
−C0/tEΔ(t)

1
2 EΔ

i (t)
1
2 .

(3.28)

Combining the estimates (3.27) and (3.28), we finally achieve that

|IΔ
i,2(t)| ≤ C0

√
tEΔ(t)

1
2 EΔ

i (t)
1
2 . (3.29)

Type 3: IΔ
i,3(t) =

∫
Ωε

(
W̃

(1)
i f̃

(1)
i − W̃

(2)
i f̃

(2)
i

)
(t,X) · (∇X + X/2

)
f̃Δ

i (t,X) · w(X) dX.

The strategy of estimating IΔ
i,3(t) is to write

W̃
(1)
i f̃

(1)
i − W̃

(2)
i f̃

(2)
i = W̃Δ

i f̃
(1)
i + W̃

(2)
i f̃Δ

i ,

where W̃Δ
i

def= W̃
(1)
i − W̃

(2)
i . Then we get, by using Hölder’s inequality, that

|IΔ
i,3(t)| ≤

(∥∥W̃Δ
i

∥∥
L∞(Ωε)

∥∥∥f̃ (1)
i w

1
2

∥∥∥
L2(Ωε)

+
∥∥W̃ (2)

i

∥∥
L∞(Ωε)

∥∥f̃Δ
i w

1
2
∥∥

L2(Ωε)

)

× ∥∥(∇X + X/2
)
f̃Δ

i w
1
2
∥∥

L2(Ωε)

≤
(∥∥W̃Δ

i

∥∥
L∞(Ωε)

E
(1)
i (t)

1
2 +
∥∥W̃ (2)

i

∥∥
L∞(Ωε)

EΔ
i (t)

1
2

)
EΔ

i (t)
1
2 .

(3.30)

By using (3.22) with p = 4/3, q = 4, and Gagliardo-Nirenberg-Ladyzhenskaya inequality, we obtain
∥∥W̃Δ

i

∥∥
L∞(Ωε)

≤ C0

∑
j �=i

∥∥f̃Δ
j

∥∥1/2

L4/3(Ωε)

∥∥f̃Δ
j

∥∥1/2

L4(Ωε)

≤ C0

∑
j �=i

∥∥f̃Δ
j w1/2

∥∥1/2

L2(Ωε)

∥∥w−1/2
∥∥1/2

L2(Ωε)

∥∥f̃Δ
j

∥∥1/4

L2(Ωε)

∥∥∇f̃Δ
j

∥∥1/4

L2(Ωε)

≤ C0

∑
j �=i

EΔ
j (t)

3
8 EΔ

j (t)
1
8 .

Similarly, and noting that f̃
(2)
j satisfies the pointwise estimate (3.24), we obtain
∥∥W̃ (2)

i

∥∥
L∞(Ωε)

≤ C0

∑
j �=i

∥∥f̃ (2)
j

∥∥1/2

L4/3(Ωε)

∥∥f̃ (2)
j

∥∥1/2

L4(Ωε)

≤ C0

∑
j �=i

E
(2)
j (t)

1
4 .
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Substituting the above two estimates into (3.30), we achieve

|IΔ
i,3(t)| ≤ C0

(
E

(1)
i (t)

1
2 EΔ(t)

3
8 EΔ(t)

1
8 + E(2)(t)

1
4 EΔ

i (t)
1
2

)
EΔ

i (t)
1
2 . (3.31)

Overall, by putting (3.25), (3.29) and (3.31) together, using Young’s inequality and the fact that
EΔ

i ≤ EΔ
i ≤ EΔ, we achieve

IΔ(t) ≤ δEΔ
i (t) + C0

(√
t + E

(1)
i (t)

1
2 + E(2)(t)

1
4
)EΔ(t) + C0e

−C0/t. (3.32)

Then substituting (3.19) and (3.32) into (3.18), and summing up over i, leads to

t
d

dt
EΔ(t) ≤ −δEΔ(t) + C0

(√
t + E(1)(t)

1
2 + E(2)(t)

1
2 + E(2)(t)

1
4
)EΔ(t) + C0e

−C0/t. (3.33)

The bound (3.14) guarantees the existence of a positive time t1, such that for all 0 < t < t1, there holds
C0

(√
t + E(1)(t)

1
2 + E(2)(t)

1
2 + E(2)(t)

1
4
) ≤ δ

2 . Then (3.33) turns into

t
d

dt
EΔ(t) ≤ −δ

2
EΔ(t) + C0e

−C0/t ≤ −δ

2
EΔ(t) + C0e

−C0/t. (3.34)

Then integrating this differential inequality from 0 to t < t1 gives

EΔ(t) ≤ C0t
−δ/2

∫ t

0

sδ/2−1e−C0/s ds ≤ e−C0/t,

which is exactly the desired estimate (3.17). �
Proposition 3.2 already shows that EΔ(t) converges extremely rapidly to 0 as t → 0, but our actual

goal is to prove that EΔ(t) vanishes identically, which will be done in the following.

Proof of the uniqueness result in Theorem 1.1. The key is to get a new differential inequality for EΔ(t)
like (3.34), but in which the “inhomogeneous” term like C0e

−C0/t does not appear.
First, the estimate (4.73) of [10] claims that as long as ε < 1/2, there holds

AΔ
i (t) ≤ −δEΔ

i (t) + C0E
Δ
i (t) + C0

(
E

(1)
i (t)

1
2 + E

(2)
i (t)

1
2
)EΔ

i (t). (3.35)

For the estimate of IΔ
i (t), we only need to modify the estimate of IΔ

i,1(t). By simply using the bound
for Ui given by (2.38), we can achieve

|IΔ
i,1(t)| ≤ C0E

Δ
i (t)

1
2 EΔ

i (t)
1
2 .

The other terms in IΔ
i (t) can be estimated exactly along the proof of Proposition 3.2. Then for small t,

we deduce

|IΔ
i (t)| ≤ C0E

Δ(t)
1
2 EΔ(t)

1
2 + C0

(
E

(1)
i (t)

1
2 + E(2)(t)

1
4
)EΔ(t)

≤ δ

2n
EΔ(t) + C0E

Δ(t) + C0

(
E

(1)
i (t)

1
2 + E(2)(t)

1
4
)EΔ(t).

(3.36)

Substituting (3.35) and (3.36) into (3.18), and summing up over i, leads to

t
d

dt
EΔ(t) ≤ −δ

2
EΔ(t) + C0E

Δ(t) + C0

(
E(1)(t)

1
2 + E(2)(t)

1
2 + E(2)(t)

1
4
)EΔ(t). (3.37)

The bound (3.14) guarantees the existence of a positive time t2, such that for all 0 < t < t2, there holds
C0

(√
t + E(1)(t)

1
2 + E(2)(t)

1
2 + E(2)(t)

1
4
) ≤ δ

2 . Then (3.37) turns into

t
d

dt
EΔ(t) ≤ C0E

Δ(t),

hence

EΔ(t) ≤
(

t

t′

)C0

EΔ(t′), ∀0 < t′ < t. (3.38)

In view of (3.17), the right-hand side of (3.38) converges to 0 as t′ → 0. Thus EΔ(t) = 0, which means
that f (1)(t) = f (2)(t) for all 0 < t < min(t1, t2). Returning to the original variables, we conclude that
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ωθ,(1)(t) = ωθ,(2)(t) for all 0 < t < min(t1, t2). Then the desired uniqueness follows from the global
well-posedness result established in Theorem 1.1 of [9], and the whole theorem has been proved. �
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